

3D Multi-object detection

- Multi-object tracking (MOT) monitors multiple moving objects over time using video data.
- The MOT is to detect objects in each frame of the video.
- For applications like autonomous driving or surveillance, MOT needs to be performed in real-time, which demands efficient algorithms to quickly process high volumes of data.

Bounding Box for detected objects in the environment

Related works

Baseline, Similar Papers and improvement on related papers

Related Papers FANTrack^[2] & mmMOT^[3]

Complexity

 Focused on improving accuracy with complexity

Speed vs Accuracy

 High MOT Accuracy, slower real-time MOT

3D Evaluation

 Projection of 3D on 2D plane compared with 2D ground truth

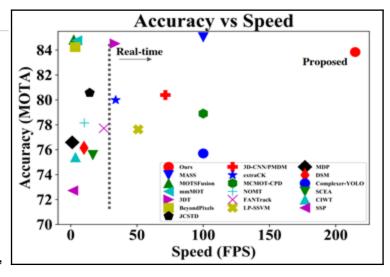
MOT Metrics

 Uses MOTA, MOTP metrics

Baseline Paper

AB3DMOT^[1]

- Focused on simpler implementation for real applications
- Faster real-time 3D MOT for similar accuracy
- 3D IoU cost functions compared with 3D ground truth
- Integral metrics sAMOTA, AMOTP metrics



^[1] X. Weng, J. Wang, D. Held and K. Kitani, "3D Multi-Object Tracking: A Baseline and New Evaluation Metrics," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 10359-10366, doi: 10.1109/IROS45743.2020.9341164.

^[2] Erkan Baser, Venkateshwaran Balasubramanian, Prarthana Bhattacharyya, Krzysztof Czarnecki, "FANTrack: 3D Multi-Object Tracking with Feature Association Network," arXiv:1905.02843.

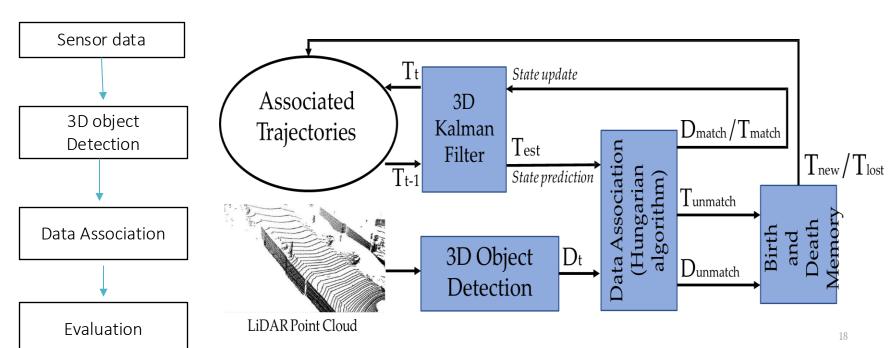
^[3] Wenwei Zhang, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, Chen Change Loy; "Robust Multi-Modality Multi-Object Tracking," Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 2365-2374

Baseline

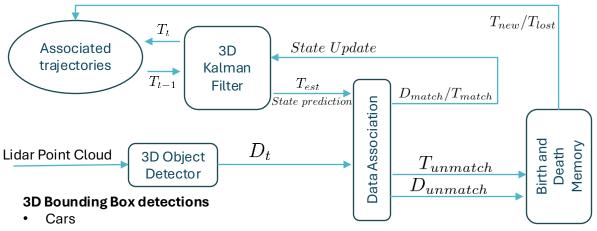
Background

3D MOT Pipe Line

Overview

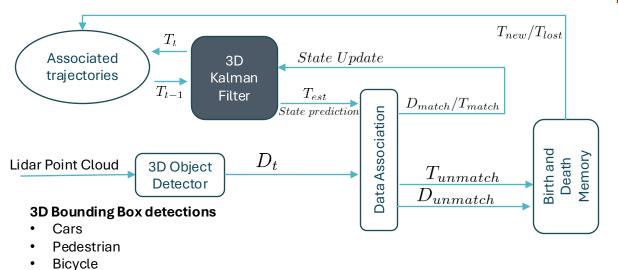


Our approach



- Pedestrian
- Bicycle

Our approach



Can we use a better prediction model or EKF?

State (dimension 10)

[x, y, z, theta, l, w, h, dx, dy, dz]

Constant velocity model

$$x = x + dx$$
$$y = y + dy$$
$$z = z + dz$$

Measured states

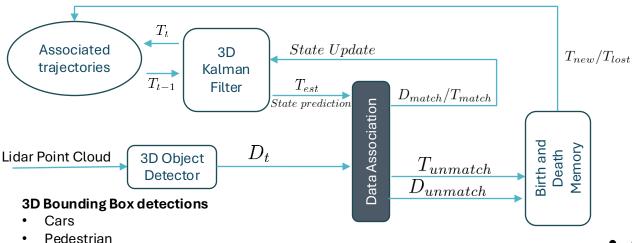
[x, y, z, theta, l, w, h, dx, dy, dz]



- Linear measurement model
- Less noisy

Our approach

Bicycle

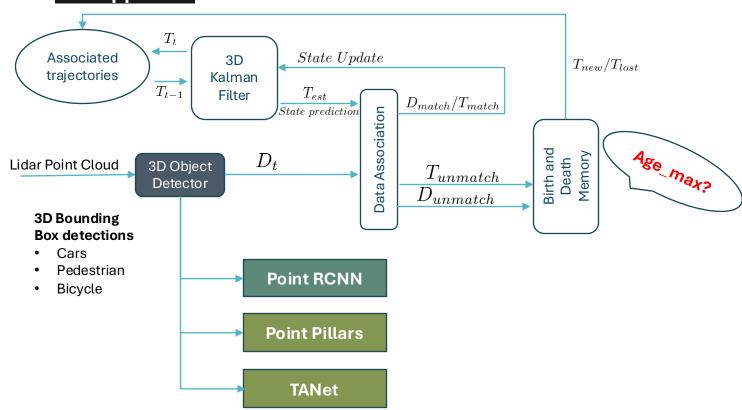


'Hungarian' vs 'greedy'

- Time complexity
- MOTA

- CAR: 'hungar'
- Pedestrian: 'greedy'
- Cyclist: 'hungar'

Our approach



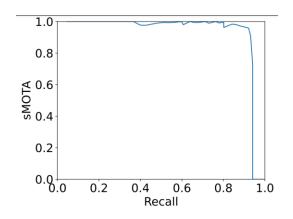
Results

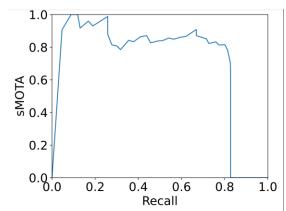
- We ran the tracking algorithm with different 3D object detectors
- PointRCnn is Observed to have better precision of the three model
- PointPillar is Observed to be faster than PointCNN
- TANet has better performance in a clustered environment compared to PointPillars.
- Increasing the age_max parameter of the tracking algorithm resulted in less fragmentation in all the observed cases, but the FPS dropped so we can infer that it takes more time to process

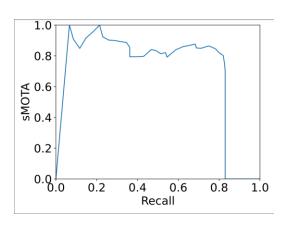
3D Mult object tracking Results (iou threshold set to 0.7)

3D Object Detector	MOTA	МОТР	sAMOTA
PointRcnn (Baseline)	0.6248	0.8264	0.7496
PointPillars	0.6316	0.7509	0.7063
TANet	0.6418	0.7439	0.7064

Results







PointRcnn PointPillar TANet

Questions???

